Mobility patterns of the elderly and future trends

Claude Marin-Lamellet
Laboratory of Ergonomics and Cognitive Sciences

Virginie Dejoux
Department of Transport Economics and Sociology

INRETS
Institut national de recherche sur les transports et leur sécurité
The french national institute for transport and safety research
Demographic trends in Europe

• **Ageing of the population EU member states**
 – The share of the 55+ population in Europe is forecasted to rise from 28% in 2005 to 40% in 2035

Important trends for higher age groups
The number of persons aged 80 and more should double by 2030 and triple by 2050

Different dynamics across EU Members
In 2035, 65+ people will be between 28-33% in Germany, 20-23% in Ireland, and around 25% in Norway
Demographic trends in Europe

• **Societal and cultural issues**
 – Diversification of life style will make the older generation more heterogeneous:
 • Single households
 • More activities related to sports, culture and recreation
 • But also significant number of “modest older people” less involved in society (economical issue)
 – Rising fuel cost will make the private car more expensive and difficult to maintain, particularly for single
 – But in a context of continuing urban sprawl it will be more difficult to organise life without using motorised vehicle
An ageing population: aged related constraints

Even if life expectancy without disability increases, the number of people with functional abilities degradation increases with age (especially after 70)

- **Mains functional areas concerned:**
 - Perception: vision, audition
 - Physical abilities: reduction of muscular strength for lower and upper limb, arthritis
 - Cognitive abilities: memory, attentional processes, executives functions

- **Personal constraints: Stress, fears**
 - Necessity to make a distinction between “young” older (before 75 years) and “old” older (over 75 years)
 - Older people need compensation strategies in order to maintain their mobility
An ageing population: aged related mobility

![Bar chart showing level of reported difficulties according to age group.](Source: INSEE – ENTD 2007-08)
(Dejoux et al 2010)
An aging population: aged related mobility

Average number of trips per day according to age
(Source: INSEE – ENTD 2007-08)
(Dejoux et al 2010)
Mobility patterns of the aged population: more mobile, more driving

Main sources of data in France
- National Travel Surveys (NTS): DOT, INSEE and INRETS
- Household Travel Survey in the Paris Region
- Household Travel Survey in urban area other than Paris

Keys figures
- “Young” Older tend to have now the same mobility (in terms of trip frequency) as younger people (no work related trips)
- 62 % of persons between 65 and 74 years old have a driving license and 49 % drive often
- In the 70-79 age group, only 10% of men and 23.9 % of women with a driving license do not have a car; for the up to 80 years old: 36 % and 58 %
- Actual generation : issue for widowed women without driving license (or car) in suburbs or rural areas
- The higher the age is, the lower is the mobility (trips frequency and distance)
Mobility patterns of the aged population: more mobile, more driving

- Distances driven by the persons over 65 years has doubled between the two national transport surveys INSEE-INRETS of 1981-82 et 1993-94
- Modal split of journeys (Household survey 1995-2000 in 15 cities)
 - Public transport 8,3%
 - Walking 46,3%
 - Car (driver and passenger) 42,7%
 - Two wheels 2,2%
- Cities with guided public transport (tramway, metro) show higher level use of public transport
- Older people tend to travel at « off peak » hours, which means sometimes low service frequency and leads to long vehicle waiting times
- Response demand services: in urban and rural areas
Mobility patterns of the aged population: more mobile, more driving

- **Trends**
 - Car ownership will continue to increase during the coming years due to mobility habits of actual middle aged people.
 - Within the next 20-30 years, the rate of car and driving license of women will be the same as men in most EU countries (but trends will be slower in Central and Easter European countries).
 - Specific tools for the study of mobility trends: the age cohort approach (Dejoux et al 2009).
Mobility patterns of the aged population: Trends

- **The age cohort approach (Dejoux et al 2009)**
 - Based on an age-cohort approach taking into account the impact of the life-cycle and generation effects through time on travel behavior, which permits to outline the impact of age and generation combined with various structural variables: gender, spatial distribution, motorization of the households …

- Mobility is measured by two variables:
 - global mobility or frequency of trips (average number of trips per person for a typical week day)
 - distance travelled (number of kilometres travelled per person for a typical week day and average)
Estimated average trip distance for elderly in the Paris area by age, gender, zone of residence and car-ownership

<table>
<thead>
<tr>
<th>Estimated average trip distance for the elderly population (in km per day)</th>
<th>Paris area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65-74</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
</tr>
<tr>
<td>Projection year</td>
<td>2005</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3.8</td>
</tr>
<tr>
<td>Female</td>
<td>3.2</td>
</tr>
<tr>
<td>Zone of residence</td>
<td></td>
</tr>
<tr>
<td>Central city</td>
<td>2.5</td>
</tr>
<tr>
<td>Inner suburbs</td>
<td>2.8</td>
</tr>
<tr>
<td>Outer suburbs</td>
<td>4.6</td>
</tr>
<tr>
<td>Level of car ownership</td>
<td></td>
</tr>
<tr>
<td>Households with no car</td>
<td>1.9</td>
</tr>
<tr>
<td>One-car households</td>
<td>3.5</td>
</tr>
<tr>
<td>Multi-car households</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Sources: Estimates based on Global Travel Surveys (1977, 1984, 1992 and 2002) and population projections according to censuses.
Mobility patterns of the aged population: Trends

- The age cohort approach (Dejoux et al 2009)
- Older people will tend to:
 - Keep the number of trips per day relatively constant
 - Increase the travelled distance
 - Increase the average travelled distance for each trip
 - Main effects in outer suburbs
 - Remaining question: impact of the rising of fuel cost
Safety issues for older people: Road users (French data)

- Older drivers are a growing part of the driver population
- 20% of killed on the road car users are over 65 years old
- As a result of functional vulnerability, older drivers have higher risk to be killed in a road accident
- Older persons tend to stop driving later **but**
 - Increase of the number of people developing pathologies linked with age (Alzheimer, Parkinson, macular degeneration, …)
 - Alzheimer: some DAT drivers have degraded driving abilities even at early stage, variability according to the level of dementia; limited awareness about their cognitive abilities
 - Concrete needs of support for the physician and hospital practitioners
- More than 50% of killed on the road pedestrians are over 65 years old
- Nearly 30% of killed on the road bicycles users are over 65 years old
Safety issues for older people: Public Transport users

- **Light/heavy rail systems**
 - European SAFETRAM project, related to passive safety in urban rail systems (Pereira et al. 2001)
 - 54% of the injured passengers were more than 55 years old
 - The main source of injuries is the floor, followed by other vehicle equipments
 - Most of the injuries sustained were not related to collision but unexpected deceleration
 - Falls are the main injury mechanisms
 - In the UK there are an average of about 200 incidents a year of passengers being injured trying to bridge the gap between the train and the platform; many are related to age or disability
Safety issues for older people: Public Transport users

• Bus context
 – The ingress-egress manoeuvres showed a high risk (Canavan et al., 2005) particularly for seniors over 65
 – Low floor reduced the problem, but only if the gap between the bus and the sidewalk is small
ACCESS2ALL framework for risk assessment

Definition of relevant criteria (proposal)

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Severity:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Improbable</td>
</tr>
<tr>
<td>2</td>
<td>Unlikely</td>
</tr>
<tr>
<td>3</td>
<td>Even Chance</td>
</tr>
<tr>
<td>4</td>
<td>Likely</td>
</tr>
<tr>
<td>5</td>
<td>Almost Certain</td>
</tr>
</tbody>
</table>

From Travel on Land-LCC-UK (2005)

- Likelihood is evaluated in comparison with the travelers without any mobility restriction ie everybody can fall in a bus or when alighting the train but a traveler with mobility impairment has a higher probability
- Severity is estimated in terms of over injuries than every traveler can experience
ACCESS2ALL framework for risk assessment

<table>
<thead>
<tr>
<th>User Groups</th>
<th>Sub-groups</th>
<th>Urban buses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress/ Egress</td>
</tr>
<tr>
<td>11. Age-related declines in abilities (>65 years)</td>
<td></td>
<td>Fall/ impact against steps or sidewalk (Difficulty to handle complex environment)</td>
</tr>
<tr>
<td>• Psychomotor limitations (Increased reaction time, Lower range of motion, Poorer coordination, Lower strength)</td>
<td></td>
<td>Likely</td>
</tr>
<tr>
<td>• Visual limitations</td>
<td></td>
<td>From minor to major injury</td>
</tr>
<tr>
<td>• Cognitive limitations (Limited attention ability, Decreased problem solving ability)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Likely: From minor to major injury
- Even: Minor (no crash)
- Likely: From minor to major injury
So what to do?

As stated in the OECD report (2001) the Challenge for society and research community is
To preserve a safe mobility

and may be

To develop a “sustainable” social participation of older generation in society
Topics for future research
Mobility by public transports

Develop the attractiveness of the public transport services to the older part of the population

- In the context of the increase of the petrol price and the probable decrease of the purchasing power of older class
- Identification of transport needs and barriers of the targeted age cohorts (accessibility, comfort and safety issues)
- Identification of factors which impact mobility and social independency of older
- Anticipate a rapid growth in demand-response transport

• In growing cities and sparsely populated areas this should help:
 - to define future service offers on mobility regarding public transport, car use, and the inter-operability between these modes
 - to develop the use of soft modes for older citizen
Topics for future research
Road safety issues

Promote a safe mobility for older road users (driver and pedestrian) and a smooth transition between car use and alternative transports

- Potential benefit from the driving assistance technologies
 » Junction management
 » Use of road signing
- Potential benefit from the use of driving simulator
 » Develop self awareness about its own abilities
 » Training of driving skills, adaptation strategies
- Improve the design of barrier free environment for pedestrians
- Develop educational approach for older pedestrian to improve their safety (simulators as possible tools)
Advanced Driver Assistance Systems

perspectives for older drivers

<table>
<thead>
<tr>
<th>Functionality</th>
<th>ADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw attention to the traffic</td>
<td>Collision warning systems (junction and rear-end) Assistance for merging and lane changing</td>
</tr>
<tr>
<td>Signal road users located in the driver’s blind spot</td>
<td>Assistance for merging and lane changing Detection of obstacles Detection of blind spot</td>
</tr>
<tr>
<td>Assist the driver in directing his attention to the relevant information</td>
<td>In vehicle signing systems Special Intelligent Cruise Control</td>
</tr>
<tr>
<td>Provide prior knowledge on the next driving situation</td>
<td>Systems that give information on the characteristics of complex intersections the driver is about to cross</td>
</tr>
</tbody>
</table>

From Davidse (2006)
ADAS perspectives for older drivers: main points of interest

• Orientation of attention: concerns complex driving situation where driver’s attention has to be directed to the relevant information,
• Attention flexibility: concerns transition phases between low level of attention to high level of attention; studies will concern normal driving situation and partially automated driving situation,
• Decision making: concerns situation where decision has to be made by the driver, situation like junction management, lane changing, merging, and overtaking
• Assessing traffic-related low attentional status
Mobility patterns of the elderly and future trends

- Mobility is an important factor to keep a good quality of life for older citizens
- Older will be a significant part of the travelling population
- Design of transport vehicle, infrastructure and operation should be improved
- News services should be developed to help older travelers
Thank you for your attention

Claude Marin-Lamellet (INRETS-LESCOT)
☎ 33 4 72 14 24 45,
✉ claude.marin-lamellet@inrets.fr

Virginie Dejoux (INRETS-DEST)
☎ 33 1 55 92 55 88,
✉ virginie.dejoux@inrets.fr